Adding Another CCD Camera to the LRIS CCD Control

Software

John Cromer

August 18, 1993

Contents

0.1 Introduction
0.2 VME VxWorks Software Changes
0.3 FIORD Software Changes
0.4 Further Work
0.5 Other Options

0.1 Introduction

The purpose of this document is to describe the simplest changes to the LRIS/HIRES CCD
control software that enable support for two CCD cameras. The system was designed with
multiple cameras in mind and each VME system was designed to control two cameras.
Relatively simple changes to the software are all that is necessary to bring another camera
on line. The changes required to the VME VxWorks functions are described first. Changes
to the FIORD library of functions are then described. These changes describe the minimal
amount of work neccessary to bring the camera up. The next sections describes work needed
to make the system more “user-friendly” and the final section examines the limitations of
the system and some possible alternatives.

It is assumed the reader has a familiarity with the design, code and directory structure of

the LRIS/HIRES CCD software.

Neglecting changes to the LRIS body and the additional camera hardware, adding a second
camera will require that the VME CCD control hardware be updated with a second camera
interface board, the so-called Harris-Ricketts board, and also another ITkon DMA controller.
The Harris-Ricketts board will have to be built either at CIT or at Lick. (The original board
for the LRIS was built at Lick.) This board will be connected to the new camera by a new
set of fiber optic cables.

0.2 VME VxWorks Software Changes

The changes to the VxWorks software for CCD control are straightfoward. All received
control messages already specify a camera number. This number can be used as an index
into arrays to select camera-specific options and set camera-specific flags. The major change
to the software then is changing certain global variables to arrays and modifying the “set,”
“show” and auxillary functions to use those arrays rather than the single variables used
now. The following step-by-step procedure can be used:

1. In crate_global_init.c convert all state-machine variables to arrays whose dimen-
sions are the total number of cameras.

2. Make the same changes in the “set” and “show” functions as well as the functions
which manipulate camera semaphores. Modify these functions to use the arrays and
the camera_id variable to index into each array.

3. Split the ccdClock() timing function into ccd0Clock() and ccdiClock and modify
them to use the appropriate elements in the arrays created in step 1.

4. Modify broadcast_camera_value() in broadcast.c to accept camera_id as a param-
eter and put it in the broadcast mail message.

The static initialization section of crate_global_init.c requiring changes is shown below:

unsigned long start_ flag[NUM_CAMERAS]; /* exposure start flag */

unsigned long stop_flag[NUM_CAMERAS]; /* exposure stop flag */
unsigned long auto_shutter [NUM_CAMERAS]; /* automatic shutter flag */
unsigned long auto_erase[NUM_CAMERAS]; /* automatic erase flag */
unsigned long auto_read[NUM_CAMERAS]; /* automatic readout flag */
unsigned long elapsed_time[NUM_CAMERAS]; /* exposure elasped time */
unsigned long total_time[NUM_CAMERAS]; /* exposure total time */
unsigned long erase flag[NUM_CAMERAS]; /* erase-in-progress flag */
unsigned long pause flag[NUM_CAMERAS]; /* pause-in-progress flag */
unsigned long erase_count[NUM_CAMERAS]; /* lines to erase on fastwipe */
unsigned long image_id[NUM_CAMERAS]; /* image identification number */
unsigned long read flag[NUM_CAMERAS]; /* readout in progress flag */
unsigned long camera_status[NUM_CAMERAS]; /* camera status value */
unsigned long window[NUM_CAMERAS][5]={

{1,0,0,2048,2048}, /* camera 0 readout window */

{1,0,0,2048,2048} /* camera 1 readout window */

b
unsigned long binning[NUM_CAMERAS] [2]={

{1,1}, /*camera 1 binning */

{1,1} /*camera O binning */

b

unsigned long preline[NUM_CAMERAS];

/* lobal number of prescan lines */
unsigned long preflush[NUM_CAMERAS];

/* # of rows flushed after prescan read */
unsigned long postline[NUM_CAMERAS];

/* # of overscan lines */
unsigned long overflush[NUM_CAMERAS];

/* # of rows flushed before postline read */
unsigned long prepix[NUM_CAMERAS];

/* Global number of prescan pixels */
unsigned long postpix[NUM_CAMERAS];

/* Global number of overscan pixels */
unsigned long keepprepix[NUM _CAMERAS];

/* Whether prepix should be saved */
unsigned long eraseline[NUM_CAMERAS];

/* Erase line flag */
long utb_digital_input [NUM_CAMERAS];

/* last digital input from utility bd.*/
long utb_digital output [NUM_CAMERAS];

/* last digital output from utility bd.*/
long utb_raw_adc_channel [NUM_CAMERAS] [UTB_NUM_ADC_CHAN] ;

/* last ADC readings */
long utb_raw target _channel [NUM_CAMERAS] [UTB_NUM_ADC_CHAN];

/* last ADC readings */
long utb_raw dac_channel [NUM_CAMERAS] [UTB_NUM_DAC_CHAN];
/* last DAC readings */

Once the arrays are created, the functions that use them must be changed. As an example,
consider the functions defined in module s_expose.c. The extern global declarations should
be changed as follows:

extern unsigned short start flagl[]; /* exposure start flag */
extern unsigned long auto_shutter[]; /* automatic shutter flag */
extern unsigned long auto_erase[]; /* automatic erase flag */
extern unsigned long erase flagl[]; /* erase in progress flag */
extern unsigned long pause_flagl[]; /* pause in progress flag */
extern unsigned long read flagl[]; /* readout in progress flag */
extern unsigned long image_id[]; /* image id number */

extern unsigned long elapsed time[]; /* elapsed integration time */

The unpacking of the music message would have to be moved to the very top of the code
in order to get the camera_id first. Then the remaining code would be changed from, for
example:

if (check (start_flag,ERR_ERROR,"E1",CHK PARAMS,

to

if (check (start_flagl[camera_id],ERR_ERROR,"E1",CHK PARAMS,

and so on througout the code. These kinds of changes should be made to every module that
references the variables changed in crate_global_init.c.

The function ccdClock() which provides exposure timing and image readout coordination
should be split into two functions: ccd0Clock() to provide these functions for camera 0
and ccdiClock() for camera 1. In each of these functions the same changes described
above should be applied. References to, for example, start flag in ccd0Clock.c should be
changed to start_flag[0] and in ccdiClock.c to start_flagl1]. Similarly, all variables
changed in crate_global_init.c should be changed in these two modules.

The function broadcast_camera value() in the broadcast.c module must be modified
to accept camera_id as a parameter and to include it in the broadcast. The calls to this
function will then need to be changed in ccd0Clock.c, ccdiClock.c, s_set_time.c and
s_expose.c. This is a bug; camera_id was simply left out of the function when it was

written. This change also inpacts the host kt1 software. The functions which receive these
broadcasts must be made to unpack camera_id from the MUSIC broadcast message.

Finally changes to the startup script should be made so that ccd0Clock() and ccdiClock()
are spawned instead of ccdClock() only.

One problem has been conveniently ignored so far in describing these changes and this is
the issue of coordination between the two cameras. A limitation of the system as described
is both cameras cannot be read out simulataneously by rced(). So, while one camera is
reading out, the other must be blocked from reading out.

(*** I'm not sure if this happens automatically in recd() or not. I imagine the software
that calls reed() will have to provide it. ***)

0.3 FIORD Software Changes

Changes to the FIORD software are completely straightfoward although cumbersum per-
haps. Basically every input and output function must be cloned and where camera_id is
set to zero, it must be set to one. Where a zero is packed into a MUSIC message for the
camera ID, a one must be substituted. Additionally all new keywords must be defined for
the new camera. The following steps summarize the process:

1. Clone new keywords for each camera command.
2. Add the new keywords to the keyword database in fiord.c

3. Clone all necessary functions: input_keyword() and output_keyword(), changing
camera 0 to camera 1.

4. Add the new FIORD functions to the file fiord_proto.h.

5. Add new temperature conversion factors, DEGREES _PER_COUNT and
COUNTS_AT_ZERO DEGREES to the tempdet.h file for the second camera.

6. Add any new modules to the makefile.

For the new keywords, I propose the keywords for the red camera be modified in the following
way: If the keyword has less than 8 characters, the FITS standard, simply add a ‘1’ to it.
If the keyword has 8 characters, change the last character two a ‘1’. With these changes,
the new keywords for both red and blue cameras are:

Red Camera Keywords Blue Camera Keywords

AUTOERAS AUTOERA1
AUTOREAD AUTOREA1
AUTOSHUT AUTOSHU1
EXPOSIP EXPOSIP1
PAUSEIP PAUSEIP1

ERASEIP ERASEIP1

TEMPDET TEMPDET1
WCRATE WCRATE1
WDISK WDISK1
ERASECNT ERASECN1
TTIME TTIME1
ELAPTIME ELAPTIM1
EXPOSE EXPOSE1
PAUSE PAUSE1
RESUME RESUME1
ABORTEX ABORTEX1
STOPEX STOPEX1
CSHUTTER CSHUTTE1
ADDFRAME ADDFRAM1
DFORM DFORM1
FRAMENO FRAMENO1
0OUTDIR 0UTDIR1
OBJECT 0OBJECT1
OUTFILE OUTFILE1
TODISK TODISK1
TOTAPE TOTAPE1
TAPEDEV TAPEDEV
WINDOW WINDOW1
BINNING BINNING1
PREPIX PREPIX1
POSTPIX POSTPIX1
DATAPIX DATAPIX1
PRELINE PRELINE1
DATALINE DATALIN1
ERASLINE ERASLIN1
POSTLINE POSTLIN1
PREFLUSH PREFLUS1
OVRFLUSH OVRFLUS1
KEEPPREP KEEPPRE1

The long versions of the keywords can be changed similarly although these are rarely used.
Since the FIORD function names are of the form output_keyword(), etc., creating the
new keywords determines the function names. The modification of the input and output
functions is simple; All instances of camera_id or and cam_id should be assigned 1 instead

of 0.

In the HIRES software, the use of macros to define functions of a repetitive nature is
employed to decrease the amount of replicate code included in the system. This has been
done to a certain extent with the CCD software as the HIRES group has continued to

develop the CCD software while the LRIS group “froze” their effort around the time of the
LRIS preshipment review. As a result the the CCD software is out of sync between the
two groups. Making these changes to the FIORD library might be a good oportunity to
“macroize” the rest of the CCD code (especially the duplicate functions for the LRIS blue
camera) and bring the two systems closer together.

0.4 Further Work

The procedures described above will get a minimal system with two cameras up and running.
Nothing was mentioned about the windows user interface. Either the current xpose display
will have to be modified to display two cameras or another xpose display will have to be
created to control the blue camera separately. It is trivial to add the second temperature
display to xshow.

Image display is also an area in need of further work. The current version of the image
server should be able to handle more than one image with no modifications. It will not,
however, display more than one image simultaneously, that is, it cannot talk to two figdisp
displays at once. This program should be modified to display two images simultaneously.

0.5 Other Options

As noted previously the procedures described above lead to a system in which two cameras
cannot be read out simultaneously. The additional 67 seconds of readout time (assuming a
two-amplifier CCD configuration) should not be significant for long exposures, but could be
painful for short exposures and test situations. Two options are considered to remedy this
problem:

1. Add a second complete VME system that would operate totaly independent of the
first CCD VME system.

2. Modify rced() to read out more than one camera simultaneously.

The first option provides the most flexibility and is simpler in software terms, but the
hardware expense is considerable. It also contradicts the original idea that two cameras
could be controlled from one VME system. It would require no significant new software
development, only the change to the image server described in the previous section to display
more than one image at once. Actually it would require less software work than described
in this document since the VME software essentially would not need to be modified, just
duplicated for the additional VME system. A number of less complex systems being easier to
maintain than a single more complex system, this options has advantages for maintenance.

In a private communication with Sam Southard, he estimated an additional month of soft-
ware effort on his part to implement option two above, that is, change rcecd() so it could
read out two cameras simultaneously. This coupled with changes to the image server on the

host computer to display images simultaneously constitute significant software changes in
addition to those previously specified. No additinal hardware costs would be necessary.

As a personal note, I tend to come down on the side of option one for its simplicity with
respect to the software, however, the additional complexity of option 2 may not be significant
enough to produce the ease-of-maintenance benefits.

