VME Software for LRIS Motor Control

John Cromer

Issued: June 8, 1993.
Revised: November 8, 1994

Contents

0.1
0.2
0.3
0.4

0.5
0.6

0.7
0.8

Introduction 2
Hardware Description 2
Source Code Locations 5
Controller Communication and Control 7
0.4.1 The Serial Port Driver 7
0.4.2 Controller Communication 8
0.4.3 Controller Support Functions 9
0.4.4 Status Report Functions 9
0.4.5 Save Status Functions 10
0.4.6 Initialization Functions 11
0.4.7 Motion Control 11
Global Data for the VME Motor Control Software 14
Stages e 19
0.6.1 The Grating Turret Subsystem. 20
0.6.2 The Red Filter Box 22
0.6.3 The Slitmask Box 23
0.6.4 The Guider Subsystem L. 24
0.6.5 The Red Camera Focus 26
0.6.6 The Trapdoor 26
Software Control of Reference Lamps 27
Idiosyncrasies 29

0.1 Introduction

This document describes the software, written using the VxWorks development system, that
runs on the VME, Sparc 1E crate used to control the LRIS mechanical stages. This software
consists primarily of the “cserv” functions, spawned by the program cserv when it receives
a message from the host workstation. The low level routines used to communicate with
the motor controllers and encoders which are called by the cserv program are described
as well as functions which can be executed from the VxWorks console. Note on the LRIS,
cserv is actually called 1serv, as opposed to the HIRES, where it is called hserv. For
more information on the mechanics of how the VME software handles messages from the
workstation see the cserv manual.

For detailed descriptions of individual functions see the Function Description document
produced from the source code headers of motor control software functions with the program
wflman.

0.2 Hardware Description

Figure 1. shows the hardware layout of the LRIS motor control system. All communications
from the VME system to the instrument run through two serial cables, one to a daisy chain
of four intelligent motor controllers and one to a daisy chain of absolute encoders. Each
controller is multiplexed to a number of motors and the identity of the motor under control
is encoded in the output bits of the controller. Each controller has 2 8-bit input words or 16
input bits. LRIS discrete mechanical stage positions are encoded in these input bits. Limit
switches are connected to input bits 7 and 8 on input word I2. Home switches, when used,
are connected to bit 6 on input word I2. Absolute encoders are used to index other stages.

VME System
|

I__I | - RS232Serial
—H H-

Instrument Wrapup

MUX MUX R5232 Serial

API

Controllers

Grating Tilt [0 0 0
Lamps Red Camera Focuf Red Filter Selector

Grating Brakes
Turret Detent 1l 11

Offset Guider Filter | Offset Guider M1 1 Red Filter Changer
Fixed Guider Filter

Polarimeter Waveplate
Polarimeter Calibration T 1

| 1 Offset Guider M2 Slitmask Selector

Grating Turret)
Rotation 2

Slitmask Changer

Slitmask Selector —
Slitmask Changer
Red Filter Selector
Red Filter Changer AR Encoders

Red Camera Focus

Offset Guider M1
Offset Guider M2

Trapdoor

Polarimeter Waveplate Rotator

Figure 1. LRIS Motor Control Hardware Overview

3

Below the LRIS mechanical stages are listed.

Table 1. Movable Stage Numbers, Names and Types

Stage Number Stage Name Stage Type
0 Grating Turret Discrete
1 Turret Detent Limit
2 Grating Tilt Brake Limit
3 Grating Tilt Encoder
4 Red Filter Selector Encoder
) Red Filter Changer Encoder
6 Blue Filter Selector Encoder
7 Blue Filter Changer Encoder
8 Red Camera Focus Encoder
9 Slitmask Selector Encoder
10 Slitmask Changer Encoder
11 Offset Guider M2 Encoder
12 Offset Guider M1 Encoder
13 Offset Guider Filter Blind
14 Slitview Guider Filter Blind
15 Trapdoor Limit
16 Polarimeter Calibration Wheel Discrete
17 Polarimeter Waveplate Rotator Encoder

Discrete stages are those which have a few discrete positions numbered 1 through M, M
being the maximum number of positions available. The number -2 is used to designate a
position that is unknown to the software.

Limit stages are those that move between limit switches. They have only two valid positions.
In the software, those two positions are designated -1 and +1, with -2 being “unknown.”
When a limit stage is positioned such that neither limit switch is engaged, the position in
the software will be reported as -2.

Encoder stages are those that have encoders attached and whose positions are more or less
continuous to the limit of the encoder resolution. There are two different kinds of encoders
used on the LRIS. One is an incremental encoder used on the grating tilt mechanism. These
encoders are attached directly to the API controller unit and are read through the controller.
An incremental encoder loses its reading when power is removed from it and must be homed
to be calibrated. The other kind of encoder is an absolute encoder. Absolute encoders are
connected to their own controllers, have individual addresses on a separate serial link, retain
their readings when power is removed and must be queried separately apart from the API
controller that actually moves the motor. Table 2. shows a list of all LRIS encoders, the
names of the stages they serve, and the type of encoder.

Table 2. Encoder Numbers, Names and Types

Encoder Number

Stage Name

Encoder Type

O 1O Tk W —O

Grating Tilt
Red Camera Focus
Offset Guider M2
Offset Guider M1
Polarimeter WavePlate

Red Filter Selector
Red Filter Changer
Slitmask Selector
Slitmask Changer

Incremental
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute

In the source code and comments, encoder stages are sometime referred to as continuous or

float stages.

Blind stages are those that have only a single limit switch to provide position feedback.
They must be moved to the limit and then indexed a given number of motor steps to the
destination position. There is no way for the software to know if the move was successful

or not unless the first limit move failed. Blind stages are discrete.

0.3 Source Code Locations

In general the motor control software is partitioned as follows.

Table 3. LSERV Modules and functions

Module Functions Description
Irs_encoder.c read_abs_encoder() Functions that deal with absolute
encoders

move_abs_encoder()

Irs_global_init.c

Irs_global init()

Initialization of all global tables and data

Irs_init.c Irs_init() Initialization of LRIS controller and en-
coder hardware
abs_init()
mes_init()
Irs_mcs.c mcs_com() Functions that communicate with motor
controllers directly
mes_limit()
mcs_output()
mcs_switch()
mcs_verify()
Irs_move.c move_int_simple() Functions which move stages

move float_simple()
move_compound()
move_api_encoder
move_gturret()
move_int_blind()
home_simple()
home_compound()

Irs_changers.c

move float_changer()
move.sc()

Functions which move jukeboxes

Irs_verify.c

verify_pos_num()

get_stage_position_code()
get_stage_position()
bins_to_int()
set_all_positions()
read_api_encoder()
zero_api_encoder()

Functions which verify the states of the
LRIS hardware

Irs_save.c

write_stage_position()

read_stage_position()

Functions to save and restore stage posi-
tions to disk

s_keyword.c

sset_keyword()
s_show_keyword()

cserv and associated specific functions

api.c api() A program to communicate to the con-
trollers directly.
ax.c ax() A program to communicate to the en-

coders directly.

All motor control software resides in the directories under /kroot/kss/lris/vme/lserv.
In the directory /kroot/kss/lris/vme/lserv/shell there is a subdirectory for each me-
chanical stage on the LRIS. These directories contain functions for manipulating each stage
at a low level from the VME console.

Table 4. Low Level Modules and Functions
Module
current.c

Functions
set_current()
show_current()
show_lamps()

gr_optical.c

gr-optical()

gr_service.c

gr_service()

move_detent.c

turret_detent_in()
turret_detent_out()

move_red_filter_changer.c

red_filter_changer_in()
red_filter_changer_out()

move_red_filter_selector.c

move_red_filter_selector()

move slitmask_changer.c

slitmask_changer_in()
slitmask_changer_out()

move_slitmask selector.c

move_slitmask selector()

move_turret.c

move_turret()

move_tv1filt.c

move_tv1filt()

move_tv2filt.c

move_tv2filt()

show.c show()

trapdoor.c close_trapdoor()
open_trapdoor()

tv1_init.c tv1_init()

Detailed descriptions of the use of these functions from the VxWorks prompt on the VME
console are given in the last chapter of the LRIS Motor Control Software Trouble Shooting
Guide.

0.4 Controller Communication and Control

0.4.1 The Serial Port Driver

The serial port driver consists of a number of functions in the modules sio2Drv.c and
sio2mpcc.h that form a seamless VxWorks subsystem for controlling the Force SIO2 Serial
Interface Card. Below is a list of functions in the driver and a very brief description of each.

Table 5. Serial Driver Functions

sio2DevCreate()
sio2Drv()
sio2HrdInit()
sio2Int()
sio2Int1()
sio2Int2()
sio2loctl()
sio20pen()
sio2Read()
sio2Write()
sio2RxInt()
sio2TxInt()
sio2Seriallnt()
sio2SetBaudRate()
sio2Startup()

Create and install VxWorks I/O device

Initialize and install VxWorks driver functions
Initialize serial board hardware

Service an interrupt for port 0

Service an interrupt for port 1

Service an interrupt for port 2

Handle a task level I/O control request

Return a pointer to the device software structure
Perform a task level read of the serial port buffer
Perform a task level write to the serial port buffer
Service a receiver interrupt

Service a transmitter interrupt

Service a serial control interrupt

Set the serial board baud rate

Start up the serial board transmitter

For more information about these functions, see the function description document generated
from the function headers by wflman. Since the driver is a part of the VxWorks system, its
source in in directory /usr/vw502b/config/sunle.

0.4.2 Controller Communication

Only one function is required to handle all communications between the VME software
and the serial port driver. This function is mcs_com() in module 1rs mcs.c. The function
descriptions document provides a detailed description of how this functions works, but a
brief description will be given here. The syntax for the function call is:

mcs_com(mode, command, reply)

where

mode is MCS_RETURN_VALUE, MCS_CONSOLE_OUT, or
MCS_WAIT_FOR_MOVE as defined in mcs.h,

MCS_RETURN_VALUE indicates the controller will return a parameter value

and this value should be passed back in the reply parameter,

MCS_CONSOLE_OUT indicates that all output from the controller will be dis-

played to the console only. No reply is returned,

MCS_WAIT_FOR_MOVE indicates command contains a controller move request

and mcs_com() should wait for the move to complete,

command is the controller ASCII command sequence,

reply is an ASCII string returning any reply from the controller.

All functions which send and receive information to and from the motor controllers do so
by calling this function.

0.4.3 Controller Support Functions

There are several other functions which deal more or less directly with the LRIS motor
controllers. They are:

Table 6. API Support Functions
Function Description
mes_limit() Read the limit switch values from the current con-
troller and return a value based on the switch val-
ues. No parameters required.
mcs_output() | Set output bits on the current controller. An 8-
character ASCII parameter encodes the bits to set.
mcs_output ("00000111") will set bits 6, 7 and 8.
mes_switch() | Switch the active controller to the one given by
the unit number in the parameter. mcs_switch(2)
makes the active controller unit number 2.
mces_verify() Execute the API “verify” command and re-
turn the parameter value to the calling pro-
gram. mcs_verify("I2",TYPE CHAR,sval,&val)
will return in sval the value for the I2 parame-
ter. mcs_verify("B",TYPE_INT,sval,&val) will
return in val the value of the B parameter.

More detail regarding these functions can be found in the Function Descriptions manual
generated from the function headers by wflman.

0.4.4 Status Report Functions

Status information from the LRIS stages is available in the form of limit switch readings,
input bit readings, incremental encoder readings and absolute encoder readings. Limit
switch readings are handled directly by the function mecs_ 1imit() discussed in table 6.
Input bit readings are used to establish the positions of discrete stages. See Table 1 for a
list of stages and stage types. The following programs check input bits and return stage
positions.

Table 7. Functions for Reading Discrete Stage Positions
Function Name Brief Description
get_stage_position_code() | Read a position code from a controller.
get_stage_position() Read a position code and convert it to a position.
verify_pos_num() Read a position and compare it with a destination
position.

Note get_stage position() will return the position of any stage, no matter what type. It
has calls to all the functions which return the status of individual stages.

More detail regarding these functions can be found in the Function Descriptions manual
generated from the function headers by wflman.

As previously discussed, incremental encoders are those which lose their memory when
power is removed and do not have their own controller. They must be connected to an API
motor controller. Nominally the call: 1rs_verify("E",TYPE_INT, sval,&val) would return
the encoder reading in val, however since the correct controller must be selected along with
a number of other things, a separate routine that does it all is provided. The following
functions deal with incremental encoders.

Table 8. Incremental Encoder Functions

Function Name Brief Description
read_api_encoder() | Read an incremental encoder through an API
controller.

zero_apiencoder() | Zero an incremental encoder through an API

controller.

See the Function Descriptions document generated with wflman for more details regarding
these functions.

All encoder stages on the LRIS, except the grating tilt mechanisms, use absolute encoders.
Each absolute encoder has its own serial interface. These interfaces are daisy chained and
connected to the LRIS serial multiplexor as shown in Figure 1. Compumotor AR encoder
interfaces are used. For a description of the command language used by these boxes see the
Compumotor AR User Manual. Two functions are used on the VME crate to read absolute
encoders and to move their associated stages.

Table 9. Absolute Encoder Functions
Function Name Brief Description
read_abs_encoder() | Read an absolute encoder.
move_abs_encoder() | Move an absolute encoder stage.

See the Function Descriptions document generated with wflman for more details regarding
these functions.

0.4.5 Save Status Functions

Since incremental encoders lose their readings when power is removed, a mechanism in soft-
ware is provided to save these readings in case of a power failure. Two functions implement
this mechanism.

Table 10. Status Save Functions
Function Name Brief Description
write_stage_pos() | Write stage ID and current position to disk.
read_stage_pos() | Read stage ID and position from disk.

10

The function write_stage pos() is invoked after every move of a stage with volatile position
feedback. Currently, the LRIS has only one such stage, the grating tilt mechanism. Although
the VME system is “diskless,” the VxWorks NFS mechanism is used to write the file over the
network to the instrument workstation. Stage status files are located with other database
information in the /usr/local/music/info directory. The function read stage pos()
is called by 1lrs_init() when the VME system is started up or whenever lrs_init() is
run manually from the VME console. For details of these functions, see the Function
Descriptions Document created from the headers by wflman.

0.4.6 Initialization Functions

A number of functions are executed upon startup and should be executed whenever power
is cycled on the LRIS. (It is not necessary to reboot the VME crate because of a power
loss to the instrument.) These functions send various initialization sequences to the LRIS
controllers, read the stage positions and reference lamp states, and update the global sections
of the VME software. The functions are:

Table 11. Hardware Initialization Functions
Function Name | Brief Description
Irs_init() Initialize the instrument controllers and VME
software.
mes_init() Initialize only the motor controllers.
abs_init() Initialize only the absolute encoders.

They are all found in the module 1rs_init.c. For details of these functions, see the Function
Descriptions Document created from the headers by wflman.

One other function is used to initialize the VME software.

Table 12. Global Data Initialization Functions
Function Name | Brief Description
Irs_global init() | Initialize global data and semaphores.

This module is where the stage information, encoder information and current position tables
are initialized with default data. It is in a separate module, 1rs_global_init.c. This
function also calls the VxWorks routines to create the semaphores used to ensure exclusive
access to the serial ports, and is only executed during the VxWorks motor control startup
script.

0.4.7 Motion Control

Several general and specific functions exist to move the LRIS stages. These functions are:

11

Table 13. Motion Control Functions
Function Name Brief Description
move_int_simple() Move a simple discrete stage.
move_float_simple() Move a simple encoder stage.
move_float_changer() | Move a encoder-based “changer” stage
move_compound() Move a compound stage.
move._sc() Move a compound selector/changer stage
move_api_encoder() Move an incremental encoder stage.
move_abs_encoder() Move an absolute encoder stage.
move_int_blind() Move a discrete blind stage.
move_gturret() Move the grating turret.

The above routines are found in lrs_ move.c, lrs_encoder.c and lrs_changers.c. For
more details refer to the Function Descriptions document and to the notes for individual
stages in this manual. For convenience, the algorithm outlines for move_int_simple() and
move_compound () are given below.

move_int_simple():
1. Check for legal stage number.
Check for legal position request.

Call mcs_switch() to switch to correct controller unit.

- N

Call mes_output () to select the correct motor.

ot

Call mes_com() to send the controller configuration sequence.
Call get_stage_position() if current position is not known.
Calculate move displacement.

Call mcs_com() to send the move sequence.

© % N>

Verify destination position was reached. Call mcs 1imit () is this is a limit stage,
verify posnum() if a discrete stage.

10. Call mes_output() to de-select the motor.

11. Update current_positions[] with the destination positions.

move_float_simple:

1. Check for legal stage number.
2. Check for legal positions request.

3. Call mecs_switch() to switch to correct controller unit.

12

4. Call mes_output () to select the correct motor.

(W]

Call mes_com() to send the controller configuration sequence.

6. Callmove_api_encoder () if thisis an incremental encoder stage, or move_abs_encoder ()
if this is an absolute encoder stage, to make the move.

move_compound():
1. Check for legal stage number.
Check for legal position request.

Call move_int_simple() for the first auxillary stage move.

Ll

Make the main move by calling move_int_simple() for discrete and limit stages,
move_float_simple() for encoder stages.

5. Call move_int_simple() for the last auxillary stage move.

In Table 14. each LRIS movable stage is listed with which of the above functions is called
by the VME 1serv function to move it.

Table 14. Stage Names and Move Functions
Stage Name Move Function
Grating Turret move_gturret()
Turret Detent move_int_simple()
Grating Tilt Brake move_int_simple()
Grating Tilt move_compound
Red Filter Selector move_sc()

Red Filter Changer move float_changer()
Blue Filter Selector move_compound()
Blue Filter Changer move_int_simple()
Red Camera Focus move float_simple()
Slitmask Selector move_sc()

Slitmask Changer move float_changer()
Offset Guider M2 move float_simple()
Offset Guider M1 move float_simple()
Offset Guider Filter move_int_blind()
Slitview Guider Filter move_int_blind()
Trapdoor move_int_simple()
Polarimeter Calibration Wheel | move_int_simple()
Polarimeter Waveplate Rotator | move_float_simple()

In the fall of 1994, the slitmask and red filter selector/changer mechanisms were converted
completely to encoder-based position feedback. Originally, microswitches were used to sup-
ply position data. Since these proved to be unreliable they were replaced with encoders. The

13

software was changed at this point and two new functions for moving the selector changers
were introduced: move_float_changer() and move_sc(). move_sc() is simply the same
algorithm as move_compound() but it calls move float _changer() to actually move the
stages. It also switches to the correct API controller and the software henceforth assumes
that both selector and changer are controlled from the same API unit. Below is the algo-
rithm used in move_float_changer () to move the individual motors of the selector/changer
mechanisms:

1. Check for legal stage number.
2. Check for legal positions request.

Call mes_output () to select the correct motor.

-

Call mcs_com() to apply power to the stage if necessary.
5. Call mcs_com() to release the brake if necessary.
6. Call mecs_com() to configure the stage.

7. Callmove_api_encoder() if this is an incremental encoder stage, or move_abs_encoder ()
if this is an absolute encoder stage, to make the move.

8. Call mcs_com() to apply the brakes if necessary.

Note the algorithm is similar to that of the move float_simple() function except for the
addition of code to control power and brakes explictly.

Note also the configuration sequence for both the slitmask changer and the red filter changer
contains a S=200 API command which sets the current hold time after the move completes.
This means current will remain applied to the motor for 2 seconds after the move finishes
which gives the software time to apply the brakes and maintains the position of the changer
during this time. A longer time interval can interfer with subsequent commands to the
controller and lead to the controller rebooting itself or losing serial communications.

0.5 Global Data for the VME Motor Control Software

The VME software for motor control maintains tables in global memory, some statically
initialized which provide information and parameters about LRIS controllers and encoders,
others which are dynamic and store the states of LRIS stages. Information about movable
stages, stage controllers and controller parameters is kept in an array of structures called
stages. Each movable stage on the LRIS has an entry in this array of structures. The stage
structure is defined in stagestruct.h and is of the following form:

14

typedef struct {

char *name; /* stage name */

int move_mc; /* controller for move */

int stat._mc; /* controller for status read */

char *ibits; /* substring of iword for status */
char *select_seq; /* output seq that selects this motor */
char *home_1_seq; /* 1st home move */

char *home 2_seq; /* 2nd home move */

char *config seq; /* api configuration sequence */

char *move_seq; /* api move sequence */

int std_disp; /* standard displacement between pos.*/
int max_positions; /* max. number of items in mechanism */
int min motor position; /* min. position in motor steps */

int max _motor position; /* max. position in motor steps */

int aux_stage; /* another associated stage id */

int encoder; /* abs encoder id (if one exists) */

int pos-no_codes [MAX PCODES] ;
/* position table, relating real */
/* stage positions to those */
/* reported by switch readings */

} STAGE;

Each of the structure members is described below.

name. The name of the stage. Examples are grating turret, grating turret _detent,
blue filter selector. In general, spaces inside the name are avoided. Using spaces may
not be fatal, however the stage name is used as a file name when the stage’s status is stored
on disk.

movemc. The unit number of the API motor controller which is connected to the stage’s
motor. This unit number must be selected with the API : command before the stage can
be moved.

statmc. The unit number of the API controller to which the stages status lines are con-
nected. This unit number must be switched selected with the : command before the stage
position can be read.

ibits. An ASCII string containing the bits used to encode a stage’s position. The positions
of discrete stages are given by switches connected to the input bits of API controllers. Each
controller has two 8-bit input words designated I1 and I2. Bits 1-8 make up I1. Bits 9-16
make up I2. (In the API documentation, bits in an input word are number from 1 from
the left as the word is displayed with the verify I1 command or the status command.)
The ibits structure member tells the software which bits encode the stage’s position. For
example, the sequence 0000011110000000 indicates bits 6, 7, 8 and 9 give the position of

15

the stage, in this case the red filter selector. Note this is bits 6, 7 and 8 on I1 and bit 1 on
I2. The software always reads both input words when a stage position is requested.

select_seq. An ASCII string containing the output bits used to select the stage’s motor.
Each controller controls 1 or more motors, selected by a motor multiplexor. The controller’s
output bits are used to switch the multiplexor and selected the desired motor. Each con-
troller has one 8-bit output word designated 01. In API terminology, bits are numbered
from the left beginning with 1. Different bits are set to selected different motors, and these
“addresses” are encoded in the select_seq. For example, the select sequence 00001101
indicates bits 5, 6 and 8 should be set to select this stage, in this case, the red camera focus
motor. The API command SET 5 6 8 would be used to select this motor.

home_1_seq. The controller command sequence used to home the stage. The sequence, when
sent to the controller would move the stage to its home, or reference, position.

home_2_seq. The second controller command sequence used to home the stage. At one point
in the development of this project, it was said that the grating tilt mechanism would require
two separate command sequences to home it. This turned out not to be the case. But here
it is anyway. And it’s in the code, too. Go figure.

config seq. The API command sequence that configures a controller for this stage. The
command sequence can be any legal combination of API commands. It is generally used
to set the motor motion profile (accelerations, base and maximum velocities, decelera-
tions, etc), the default input bit states, the “power-down” time. A typical sequence is
"4=2000,D=6000,B=5000,H=34000,M=34000,1D2=11111111,5=100\r \n".

std_disp. The stage’s standard displacement. A better name for this might be unit dis-
placement. It is the distance in motor steps required to move a discrete stage one position.
The software moves discrete stages in multiples of this number to get from one position to
another. An example is, 206475, the number of motor steps required to move the red filter
selector one position.

max_positions. The stage’s total number of discrete positions. This applies to discrete
stages only. The value of this parameter for the slitmask selector is 10, for example. This
number is 0 for encoder stages, 2 for limit stages.

min motor position. The minimum motor (or encoder) position valid for a stage. The
software will reject any motor move whose destination position is less than this number.

max motor position. The maximum motor (or encoder) position valid for a stage. The
software will reject any motor move whose destination position is greater than this number.

aux_stage. A compound stage’s auxillary stage. Used only by compound stages. The
value should be -1 for any simple stage. This is the number (index position in this array of
stage structures) of the stage that is moved before and after a move of the present stage.
For example, the auxillary stage of the grating turret is the turret detent stage, number 1.
Likewise stage 2, the grating brake, is the auxillary stage for the grating tilt mechanism.
A non-negative number in this field indicates the stage is a compound one. An entry of -1
indicates no auxillary stage and thus the stage is a simple one.

16

encoder. The encoder number. This is the number (index position in the encoder table) of
an encoder that provides position feedback for this stage. Example: encoder number 2 is
the encoder attached to the offset guider M2 motor, stage 11. See the lrs_global_init.c
file where these tables are initialized.

posno_codes. An integer array of numbers which are the switch codes corresponding to
the discrete positions of a stage. These are the numbers that are read from the input bits
of the stage’s status controller. For example, the red filter selector stage’s entries are 0,
15, 11, 9, 13, 12, 8 and 1. When the stage is at position 2, the switch reading should be
11. At position 5, the API input bits when decoded should give a 12. Note these arrays
are indexed from 0, and user positions are designated beginning with 1, so the zeroth value
of each of these arrays is never used. The maximum number of array entries is defined in
stagestruct.h as MAX_PCODES.

Information and operating parameters for the various encoders are similarly defined in the
ENCODER structure. An array of these structures is defined and initialized in 1rs_global_init.c.
Each encoder on the LRIS has an entry in this array of structures. Each structure entry

has the following form as defined in stagestruct.h:

typedef struct {

char *type; /* encoder controller type "AX" or "API" %/
char *dca; /* encoder daisy chain address */

int etol; /* move error tolerance */

int max_tries; /*max times to try to reach etol */

int mspr; /* motor steps per shaft revolution */
int espr; /* encoder steps per shaft revolution */
char *init_seq; /* encoder initialization sequence */
char *read_seq; /* encoder read sequence */

int min_pos; /* minimum encoder position limit*/

int max._pos; /* maximum encoder position limit */

int offset; /* encoder offset */

int scale; /* encoder scale */

char *port /* encoder serial port */

} ENCODER;

Each of the structure members is described below.

type. An ASCII string encoding the type of encoder, “API” indicating an incremental en-
coder read through an API controller, or “AX”, indicating a Compumotor absolute encoder.
The astute student of the LRIS documentation will notice in the Compumotor manuals and
hardware descriptions, the absolute encoders are referred to as “AR” encoders. Why then,
the “AX” designation in the software? Why, indeed. This is the kind of information found
in the “idiosyncrasies” section of the manual. Suffice it to say for now that where ever you
see an AX in the software, read it as AR.

17

dca. An ASCII string containing the numerical address of the encoder on the serial daisy
chain.

etol. The error tolerance for a move using this encoder in encoder steps. All encoder moves
are implemented as servo loops. The servo loop will iterate until the difference between the
destination position and the current position is less than this number or until the loop times
out. See max_tries also.

max_tries. The maximum number of times to execute a servo loop before it times out. All
encoder moves are implemented as servo loops. The servo loop will continue to iterate as
long as the loop counter is less than or equal to this number and the difference between the
destination position and the current position is greater than etol. See etol.

mspr. Motor steps per revolution. This number is the total number of microsteps per shaft
revolution of the motor to which this encoder is connected. In general, the number is 12800.

espr. Encoder steps per revolution. This number is the total number of steps per shaft
revolution of the encoder. In general, this number is 10000.

init_seq. The encoder initialization sequence. This is an ASCII character sequence which
is used to initialize an encoder.

read_seq. The encoder read sequence. This is the ASCII character sequence that must
be sent to an encoder (or motor controller) to read the encoder’s current position. For the
absolute encoders, the sequence is nPR where n is the daisy chain address of the encoder.
For incremental encoders, the sequence is VER E which the dedicated LRIS student will
recognize as the API verify command requesting the value of the E parameter.

min_pos. The encoder minimum position. This is the encoder position at its absolute
minimum of travel — usually against a negative limit switch. This value is used as a software
limit in the VME software and is defined in the file encoder _params.h in the fiord section
of the /kroot directory tree.

max_pos. The encoder maximum position. This is the encoder position at its absolute
maximum of travel — usually against a positive limit switch. This value is used as a software
limit in the VME software and is defined in the file encoder_params.h in the fiord section
of the /kroot directory tree.

offset. The encoder offset. This is the encoder value at a known reference location. It is
sometime called the “bias” or “intercept.” It’s value is defined in the file encoder_params.h
in the fiord section of the /kroot directory tree.

scale. The encoder scale. This is the value used to convert absolute encoder units to user
units. It is sometime called the “slope.” It’s value is defined in the file encoder_params.h
in the fiord section of the /kroot directory tree.

port. The encoder serial port. This is a character string that designates the VxWorks 1/0O
system name of the serial port to which the encoder is attached. The two possible values
are “/sio2/1” and “/sio2/2.”

18

A global array of integers is used to store the current positions of all stages. The contents
of this array, current _positions[], is initialized with default values of -2 (unknown) in
the function lrs_global_init.c. The startup software, specifically, 1rs_init (), requests
the positions of all stages from the hardware and updates this array. The position of the
grating tilt mechanism is read from a file. Currently, this is the only stage on the LRIS
whose position is volatile. (It is also the only stage which normally must be homed.)

The reference lamp states are also stored in a global integer array, lamp_status[].

Other global data are defined in 1rs_global_init.c but are currently not used.

0.6 Stages

In this section, individual stages will be discussed. Some notes on the stage’s motion will be
given to provide context to the software discussion. The 1serv() functions will be described,
the move functions used and unusual features and necessary actions will be discussed.

In general, the “set” routines all do the same thing;:

1. Unpack the stage ID from the music message.
Unpack the destination position from the music message.
Send the first status message back to the workstation.

Take the serial port semaphore(s).

AR

Pass the ID and position to the appropriate “move” function
6. Give the serial port semaphores(s).
7. Update the current position global table.

8. Send the final status message back to the workstation.

The “show” routines are similar in function. They each unpack the stage ID from the music
message, use it to index into the current_positions[] array return the value found there,
suitably translated into a stage position. In general, “show” functions do not send requests
to the instrument for stage states. The reason for this can be found in the design of the
system. It is a “serial” system. When a request is made to the instrument, the serial port
is locked exclusively to the requesting function. Any other requests to the instrument are
queued, waiting for the port semaphore to be released. If this happened during a request for
some position to go into the image header, the image writing functions might time out and
not be able to get the value for the header. While not as robust as a direct query, obtaining
the stage positions from global VME memory provides a satisfactory way around the serial
limitations of the system.

19

Note all conversions from encoder readings to user units are done on the host workstation in
the FIORD system. See the FIORD Software for LRIS Motor Control manual for details.
The 1serv() functions only deal with switch and encoder readings, not mm, microns, etc.

Below, each stage and its associated lserv function will be discussed. Idiosyncrasies and
deviations from the norm will be noted. Unusual requirements and how they are handled
for each stage will be discussed.

0.6.1 The Grating Turret Subsystem.
Grating Turret.

The 1serv() functions s_set_grating() and s_show_grating field music messages and
handle requests relating to the grating turret.

The grating turret is the most complex of the movable mechanisms on the LRIS. The turret
rotates, moving any of 5 different grating stations to either of two different positions, the
optical port or the service port, making a total of 10 legal turret positions. The grating
turret is a compound stage. The turret detent mechanism, which locks the grating turret
into position, is the auxillary stage. The turret detent must be moved before and after each
grating turret move. Additionally, the turret cannot be moved if a grating is tilted. The
software to move the turret must detect this condition and home the grating tilt before
attempting the turret move. In order to accomplish all this the s_set_grating() function
calls a custom move function move _gturret (). Here are the general algorithms for each:

s_set_grating():

1. Unpack stage ID and desired grating number from music message.
2. Send back first status to host workstation.

Take the controller serial port semaphore.

-

Convert desired grating number to turret position number.

ot

Call move_gturret () to make the move.
Update current positions[stage_id] with the new position.
Release the semaphore.

Call zero_api_encoder() to zero the current grating encoder.

e e >

Send final status back to host workstation.

move _gturret():

1. Switch to grating tilt controller.

20

2. Send configuration sequence to grating tilt controller.
Set output bit 1 on controller to turn on opto+5.
Check for all grating tilt mechanisms at home.

Home the current grating tilt if necessary.

S o ke w

Reset output bit 1 on this controller to turn off opto+5.
Switch to grating turret controller.

Apply power to the turret.

© ®

Remove the grating detent.
10. Move the turret.

11. Check success of move.

12. Insert the grating detent.

13. Remove power from turret.

For more details, see the function description for move_gturret() in the wflman generated
Function descriptions document.

Note step 8 in the s_set_grating() algorithm. After a turret move completes, a new grating
station is connected to its motor controller via the turret position switch. Since the grating
tilt encoder is a incremental encoder, the encoder reading after a grating turret move is
invalid. Setting the encoder to zero is valid because the grating tilt is at its home location,
else the turret would not have moved.

The s_show_grating function handles the music request for the grating station that is
currently in the optical port. Note this is not the same number as the grating position
number. The turret position number is read from current positions[] as usual but this
number must be further translated to the grating station in the optical port. The array
opt_positions is used to convert a grating turret position number to a optical port grating
station number. This number is sent back to the host workstation to satisfy the show
grating request.

The Grating Tilt

The 1serv() functions s_set_grangle() and s_show_grangle field requests for the grating
tilt mechanism. This mechanism is a compound mechanism, with the grating brakes as the
auxillary stage. The brakes must be released before each tilt move and applied after each
move. The s_set_grangle() function implements the following algorithm:

1. Unpack stage ID and destination encoder position from music message.

21

2. Send first status message back to host workstation.

3. Check grating turret position. If the position is an odd number, this indicates the
grating station is at the service port and cannot be tilted. Return an error. If the
positions is not an odd number continue.

4. Take the controller serial port semaphore.

Ot

Call move_compound to make the tilt move.
Call read_api_encoder to determine the final tilt position.
Update current_positions[stage_id] with this value.

Call write_stage_pos() to save the value to disk.

© oo N O

Release the controller serial port semaphore.

10. Send final status to host workstation.

The s_show_grangle() function is completely standard:
1. Unpack stage ID from music message.

2. Send back current _positions[stage ID] as the reply.

The grating tilt stage is the only stage on the LRIS that needs to be homed for normal
operation. All of the other stages have nonvolatile mechanisms for position reporting.

Currently there are no keywords for moving either the turret detent or the grating brakes
independently. It seems like a dangerous thing to provide. These stages can be moved
“manually” from the VME console. See the LRIS Motor Control Troubleshooting Guide for
details.

0.6.2 The Red Filter Box

The functions s_set _redfnum() and s_show_redfnum() handle requests for the red filter
selector/changer.

The red filter selector is a compound mechanism with the filter changer (or grabber as it’s
sometimes called) as its auxillary stage. A complete filter move consists of removing the
current filter from the optical path with the grabber, moving the selector to the desired
filter, and inserting this filter into the optical path with the grabber. The LRIS has 6
different filters for the red camera, including a clear holder, and hence the filter selector has
6 positions, numbered 1-6. For the changer stage, the software must first apply power and
then release the brake before a move can be made. After the move is completed the brake
is then applied before the power is released. The move_sc() and move_float_changer()
functions do this.

s_set_redfnum():

22

1. Unpack stage ID and desired red filter number from music message.
2. Send back first status to host workstation.

Take the controller serial port semaphore.

Call move_sc() to make the move.

Update current _positions[] with the new position.

Release the semaphore.

N ot ke

Send final status back to host workstation.

s_show_redfnum():
1. Unpack stage ID from music message.

2. Send back current positions[stage ID] as the reply.

0.6.3 The Slitmask Box

The functions s_set_slitmask() and s_show_slitmask() handle requests for the slitmask
selector/changer.

The slitmask selector is a compound mechanism with the slitmask changer (or grabber) as
its auxillary stage. A complete slitmask move consists of removing the current slitmask from
the optical path with the grabber, moving the selector to the desired slitmask, and inserting
this slitmask into the optical path with the grabber. The LRIS has 10 different slitmask
positions numbered 1-10. For the changer stage, the software must first apply power and
then release the brake before a move can be made. After the move is completed the brake
is then applied before the power is released. The move_sc() and move_float_changer()
functions do this.

s_set_slitmask():
1. Unpack stage ID and desired slitmask number from music message.
Send back first status to host workstation.
Take the controller serial port semaphore.
Call move_sc() to make the move.
Update current _positions[] with the new position.

Release the semaphore.

I e

Send final status back to host workstation.

23

s_show_slitmask():

1. Unpack stage ID from music message.

2. Send back current_positions[stage ID] as the reply.

0.6.4 The Guider Subsystem

The guider subsystem consists of the offset guider which as two motors, the slit viewing
guider which has no motors, and a movable filter wheel for each.

The Offset Guider

The functions s_set_tvifpos() and s_show_tvifpos() handle requests for the offset guider.

The offset guider mechanism consists of two motors each with an encoder. One motor,
designated M1, moves a pickoff mirror with respect to the guider camera lens, simultaneously
adjusting its position and the guider focus. The other motor, designated M2, moves the
entire offset guider assembly changing only the position of the pickoff mirror, not the guider
focus. Both motors must be moved with each offset guider request in order to change the
pickoff mirror position and keep the image in focus. Thus, the s_set_tvifpos() function
makes two calls to move_float_simple() instead of just one. The algorithm is:

1. Unpack stage ID and destination encoder position for M2 from music message.
2. Unpack stage ID and destination encoder position for M1 from music message.
3. Send back first status to host workstation.
4. Take the controller serial port semaphore.
5. Call move float_simple() to move M2.
6. Update current_positions[] with M2’s new position.
7. Call move float_simple() to move M1.
8. Update current_positions[] with M1’s new position.
9. Release the semaphore.

10. Send final status back to host workstation.

Similarly, s_show_tvifpos() must send back the encoder positions of M1 and M2 in order

for the FIORD function on the workstation to be able to calculate the actual position in
mm, of the offset guider. The algorithm is:

24

1. Unpack stage ID for M2 from music message.
2. Unpack stage ID for M1 from music message.

Pack current _positions[M2] into music message.

RS

Pack current positions[M1] into music message.

5. Send back the music message.

The Guider filters

Requests to the offset guider filter wheel are handled by s_set_tvifilt () and s_show_tvifilt().
Requests to the slit viewing filter wheel are handled by s_set_tv2£ilt () and s_show_tv2filt ().

As noted previously, both the offset guider filter wheel and the slit viewing guider wheel
have no positions feedback except for one limit switch each. In the software these are called
blind stages. Both have 4 positions, numbered 1-4. Both are handled in the standard way
with a call to move_int blind() which moves the wheel to the limit switch first to get
a reference point, then moves the wheel in the opposite direction the required number of
motor steps to obtain the desired position. The 1serv() function algorithms are:

s_set_tvifilt():
1. Unpack stage ID and desired position number from music message.
2. Send back first status to host workstation.
3. Take the controller serial port semaphore.

4. Call move_int blind() to make the move.

ot

Update current _positions[] with the new position.

Release the semaphore.

N>

Send final status back to host workstation.

s_show_tvifilt():

1. Unpack stage ID from music message.

2. Send back current positions[stage ID] as the reply.

The functions s_set_tv2filt () and s_show_tv2filt () operate in exactly the same manner.

25

0.6.5 The Red Camera Focus

The functions s_set_redfocus() and s_show_redfocus() handle requests for the red cam-
era focusing mechanism.

The red camera focus mechanism is a simple, encoder stage that moves the camera barrel
along the LRIS optical path. The full range of travel is only a few millimeters. No auxillary
stages are required. The move is completely standard and uses only general mechanisms as
they’ve been described above.

s_set _redfocus():
1. Unpack stage ID and desired encoder position from music message.
2. Send back first status to host workstation.
3. Take the controller serial port semaphore.

4. Call move_ float_simple() to make the move.

ot

Update current _positions[] with the new position.

Release the semaphore.

N>

Send final status back to host workstation.

s_show_redfocus():

1. Unpack stage ID from music message.

2. Send back current positions[stage ID] as the reply.

0.6.6 The Trapdoor

The functions s_set_trapdoor() and s_show_trapdoor() handle requests for the trapdoor
stage.

The trapdoor mechanism is a simple, limit stage that opens and closes a toilet-lid-like door
at the top of the spectrograph. It has only two valid positions. No auxillary stages are
required. The move is completely standard and uses only general mechanisms as they’ve
been described above.

s_set_trapdoor():

1. Unpack stage ID and desired position from music message.

2. Send back first status to host workstation.

26

Take the controller serial port semaphore.
Call move_int_simple() to make the move.
Update current _positions[] with the new position.

Release the semaphore.

S

Send final status back to host workstation.

s_show_trapdoor():

1. Unpack stage ID from music message.

2. Send back current _positions[stage ID] as the reply.

0.7 Software Control of Reference Lamps

Reference and calibration lamps are connected to bits 3-8 on API unit 0 (the grating tilt
controller). Lamp 1 is assigned to bit 3, Lamp 2, to bit 4, etc. Although bits 7 and 8 are set
up in the hardware and software, lamps are not connected to these switches yet. Switching
a lamp on or off is a simple matter of setting or resetting the appropriate output bit. For
example, the APl command set 5 would switch lamp 3 on. The command reset 3 6
would switch lamps 1 and 4 off. In general the VME software simply sends these sequences
to the controller and maintains a global status array called lamp_status[]. The following
table gives the software functions used to control the lamps.

Table 15. Lamp Control Functions

Function Name | Brief Description

s_set_lamp() Execute workstation request to switch a lamp on
or off.

s_show_lamps() Return status of all lamps to host workstation.

switch_lamps() Send request to lamp controller to turn a lamp on
or off.

get_lamp statii() | Send request to lamp controller to read status of
all lamps.

All lamp functions are found in the module s_lamp.c. Below are general algorithms executed
by the above four functions.

s_set_lamp().
1. Unpack lamp ID from music message.
2. Unpack integer value for music message.

3. Send first status to host workstation.

27

4. Take serial port semaphore.
5. Call switch lamps(lamp ID, bval) to switch the lamp state.
6. Release the semaphore.

7. Send second status back to host workstation.

s_show_lamps().

1. Pack lamp_status[] contents into music response.

2. Send response to host workstation.

switch lamps().
1. Check valid lamp ID.
2. Call mcs_switch() to select the correct controller.

3. Use bval to create controller request set or reset.

-

Switch on lamp ID to complete the request with the proper bit number to switch.

ot

Send the request to the controller.
6. Send request to the controller to read back 01, the output bits.

7. Verify the appropriate bit was set (or reset).

get lamp statii().

1. Call mes_switch() to select the correct controller.
2. Call mcs_com() to read 01 the output bits.

3. Update lamp_status[] with the state of the appropriate bits in 01.

Note there is no way for the software to know if the lamps are actually on. It can only read
the states of the output bits.

28

0.8 Idiosyncrasies

Finally, we conclude the manual with a few notes about the major software idiosyncrasies
and inconsistencies in the VME motor control software.

1. The Compumotor absolute encoders are often referred to, in naming symbols and in
the comments as AX encoders. The correct designation, as a glance at the cover of
the Compumotor Encoder User Manual will show, should be AR encoders. This is
a result of a holdover from the days of Compumotor AX controllers, which were the
controllers of choice when the LRIS was first designed.

2. There are a number of exceptions in the general stage handling code for the grating
tilt mechanism. As noted before, the grating tilt position must be saved to disk after
each move in order to recover from a power failure. The OPTO++5 input on the the
grating tilt API controller (unit 0) must be activated before the stage is homed and
deactivated afterwards. This is done by setting and reseting bit 1 (set 1 and reset 1)
on the controller before and after the home command is sent. See move_gturret() in
module 1rs_move.c. After every stage move, the output bits of the selected controller
are reset to 0. This applies brakes on certain stages. On the grating tilt controller,
this turns off all the lamps should any be on. An exception was added to the general
move code to not reset the output bits for the grating tilt stage.

3. When checking the status of a limit stage, not only does the correct api unit need to
be selected, but the correct motor must be selected by setting the appropriate output
bits on the controller. This is not true of discrete or encoder stages.

29

